Fuzzy Vector Field Orientation Feedback Control-Based Slip Compensation for Trajectory Tracking Control of a Four Track Wheel Skid-Steered Mobile Robot
نویسندگان
چکیده
Skid‐steered mobile robots have been widely used in exploring unknown environments and in military applications. In this paper, the tuning fuzzy Vector Field Orientation (FVFO) feedback control method is proposed for a four track wheel skid‐steered mobile robot (4‐TW SSMR) using flexible fuzzy logic control (FLC). The extended Kalman filter is utilized to estimate the positions, velocities and orientation angles, which are used for feedback control signals in the FVFO method, based on the AHRS kinematic motion model and velocity constraints. In addition, in light of the wheel slip and the braking ability of the robot, we propose a new method for estimating online wheel slip parameters based on a discrete Kalman filter to compensate for the velocity constraints. As demonstrated by our experimental results, the advantages of the combination of the proposed FVFO and wheel slip estimation methods overcome the limitations of the others in the trajectory tracking control problem for a 4‐TW SSMR.
منابع مشابه
Trajectory tracking for a mobile robot with skid-slip compensation in the vector-field-orientation control system
The article is devoted to a motion control problem for a differentially driven mobile robot in the task of trajectory tracking in the presence of skid-slip effects. The kinematic control concept presented in the paper is the Vector Field Orientation (VFO) feedback approach with a nonlinear feed-forward skid-slip influence compensation scheme. The VFO control law guarantees asymptotic convergenc...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملVector-Field-Orientation Tracking Control for a Mobile Vehicle Disturbed by the Skid-Slip Phenomena
The paper is devoted to the trajectory tracking control task for a differentiallydriven vehicle moving on a plane surface under conditions of the persistent skid-slip phenomena. The Vector Field(s) Orientation (VFO) control strategy, presented originally for undisturbed case in [6], has been reformulated here to the new disturbed motion conditions. The extension of the VFO strategy relies on in...
متن کاملHybrid Control Design for a Wheeled Mobile Robot
We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking feedback control law based on dynamic feedback linearization is sufficient to stabilize the system...
متن کامل